Arctic Air is a one-hour adventure series set in the booming Arctic, about a maverick airline and the unconventional family who runs it. That world is Yellowknife, and the High Arctic that lies beyond. The vast terrain and unforgiving climate mean the stakes are sky-high. This is life without a safety net.

Arctic Air - Netflix

Type: Scripted

Languages: English

Status: Ended

Runtime: 60 minutes

Premier: 2012-01-10

Arctic Air - Polar vortex - Netflix

A polar vortex is an upper level low-pressure area lying near the Earth's poles. There are two polar vortices in the Earth's atmosphere, overlying the North and South Poles. Each polar vortex is a persistent, large-scale, low pressure zone that rotates counter-clockwise at the North Pole (called a cyclone), and clockwise at the South Pole, i.e. both polar vortices rotate eastward around the poles. The bases of the two polar vortices are located in the middle and upper troposphere and extend into the stratosphere. Beneath that lies a large mass of cold, dense arctic air. The vortices weaken and strengthen from year to year. When the vortex of the arctic is strong, it is well defined, there is a single vortex, and the arctic air is well contained; when weaker, which it generally is, it will break into two or more vortices; when very weak, the flow of arctic air becomes more disorganized and masses of cold arctic air can push equatorward, bringing with it a rapid and sharp temperature drop. The interface between the cold dry air mass of the pole and the warm moist air mass further south defines the location of the polar front. The polar front is centered, roughly at 60° latitude. A polar vortex strengthens in the winter and weakens in the summer due to its dependence on the temperature difference between the equator and the poles. The vortices span less than 1,000 kilometers (620 miles) in diameter within which they rotate counter-clockwise in the Northern Hemisphere, and in a clockwise fashion in the Southern Hemisphere. As with other cyclones, their rotation is driven by the Coriolis effect. When the polar vortex is strong, there is a single vortex with a jet stream that is “well constrained” near the polar front. When the northern vortex weakens, it separates into two or more vortices, the strongest of which are near Baffin Island, Canada and the other over northeast Siberia. The Antarctic vortex of the Southern Hemisphere is a single low pressure zone that is found near the edge of the Ross ice shelf near 160 west longitude. When the polar vortex is strong, the mid-latitude Westerlies (winds at the surface level between 30° and 60° latitude from the west) increase in strength and are persistent. When the polar vortex is weak, high pressure zones of the mid latitudes may push poleward, moving the polar vortex, jet stream, and polar front equatorward. The jet stream is seen to “buckle” and deviate south. This rapidly brings cold dry air into contact with the warm, moist air of the mid latitudes, resulting in a rapid and dramatic change of weather known as a “cold snap”. Ozone depletion occurs within the polar vortices – particularly over the Southern Hemisphere – reaching a maximum depletion in the spring.

Arctic Air - Climate change - Netflix

The general assumption is that reduced snow cover and sea ice reflect less sunlight and therefore evaporation and transpiration increases, which in turn alters the pressure and temperature gradient of the polar vortex, causing it to weaken or collapse. This becomes apparent when the jet stream amplitude increases (meanders) over the northern hemisphere, causing Rossby waves to propagate farther to the south or north, which in turn transports warmer air to the north pole and polar air into lower latitudes. The jet stream amplitude increases with a weaker polar vortex, hence increases the chance for weather systems to become blocked. A recent blocking event emerged when a high-pressure over Greenland steered Hurricane Sandy into the northern Mid-Atlantic states.

A study in 2001 found that stratospheric circulation can have anomalous effects on weather regimes. In the same year researchers found a statistical correlation between weak polar vortex and outbreaks of severe cold in the Northern Hemisphere. In more recent years scientists identified interactions with Arctic sea ice decline, reduced snow cover, evapotranspiration patterns, NAO anomalies or weather anomalies which are linked to the polar vortex and jet stream configuration. However, because the specific observations are considered short-term observations (starting c. 13 years ago) there is considerable uncertainty in the conclusions. Climatology observations require several decades to definitively distinguish natural variability from climate trends.

Arctic Air - References - Netflix